Accelerating Cfd-based Aeroelastic Predictions Using System Identification

نویسندگان

  • Timothy J. Cowan
  • Kajal K. Gupta
چکیده

System identification is evaluated as an efficient and accurate technique for modeling unsteady aerodynamic forces for use in time-domain aeroelastic analysis. In the system identification methodology, the constant coefficients of a linear system model are fit to the computed response time histories from a 3-D, unsteady CFD solver. The resulting model of the unsteady CFD solution is independent of both dynamic pressure and structural parameters. Hence, this methodology has the advantage that only one CFD flow-field computation for each Mach number must be completed to determine the aeroelastic instability boundary. Results show that system identification can accurately model the unsteady aerodynamic forces for complex aerospace structures of practical interest. The methodology results in a substantial savings in computational time when predicting aeroelastic instabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models

Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the ...

متن کامل

Development of a Discrete-time Aerodynamic Model for Cfd- Based Aeroelastic Analysis

System identification is used to develop an accurate and computationally efficient discrete-time aerodynamic model of a three-dimensional, unsteady CFD solution. This aerodynamic model is then used in place of the unsteady CFD solution in a coupled aeroelastic analysis resulting in a substantial savings in computational time. The methodology has the advantage of producing an explicit mathematic...

متن کامل

Development of Unsteady Aerodynamic and Aeroelastic Reduced-order Models Using the Fun3d Code

Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aerodyna...

متن کامل

Calculation of Wing Flutter by a Coupled Fluid-Structure Method

An integrated computational  uid dynamics (CFD) and computational structural dynamics (CSD) method is developed for the simulation and prediction of  utter. The CFD solver is based on an unsteady, parallel, multiblock, multigrid Ž nite volume algorithm for the Euler/Navier–Stokes equations. The CSD solver is based on the time integration of modal dynamic equations extracted from full Ž nite e...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999